Taught by Patrick Hebron at ITP, Fall 2015
Documentation:
Importing Numpy library:
import numpy as np
Array Creation:
>>> np.array( [ 0, 2, 4, 6, 8 ] )
array([0, 2, 4, 6, 8])
>>> np.zeros( 5 )
array([ 0., 0., 0., 0., 0.])
>>> np.ones( 5 )
array([ 1., 1., 1., 1., 1.])
>>> np.zeros( ( 5, 1 ) )
array([[ 0.],
[ 0.],
[ 0.],
[ 0.],
[ 0.]])
>>> np.zeros( ( 1, 5 ) )
array([[ 0., 0., 0., 0., 0.]])
>>> np.arange( 5 )
array([0, 1, 2, 3, 4])
>>> np.arange( 0, 1, 0.1 )
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
>>> np.linspace( 0, 1, 5 )
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
>>> np.random.random( 5 )
array([ 0.22035712, 0.89856076, 0.46510509, 0.36395359, 0.3459122 ])
Vector Addition:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> b = np.array( [ 10.0, 20.0, 30.0, 40.0, 50.0 ] )
>>> a + b
array([ 11., 22., 33., 44., 55.])
Vector Subtraction:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> b = np.array( [ 10.0, 20.0, 30.0, 40.0, 50.0 ] )
>>> a - b
array([ -9., -18., -27., -36., -45.])
Hadamard Product:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> b = np.array( [ 10.0, 20.0, 30.0, 40.0, 50.0 ] )
>>> a * b
array([ 10., 40., 90., 160., 250.])
Dot Product:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> b = np.array( [ 10.0, 20.0, 30.0, 40.0, 50.0 ] )
>>> np.dot( a, b )
550.0
Vector-Scalar Addition:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> a + 3.14
array([ 4.14, 5.14, 6.14, 7.14, 8.14])
Vector-Scalar Subtraction:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> a - 3.14
array([-2.14, -1.14, -0.14, 0.86, 1.86])
Vector-Scalar Multiplication:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> a * 3.14
array([ 3.14, 6.28, 9.42, 12.56, 15.7 ])
Vector-Scalar Division:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> a / 3.14
array([ 0.31847134, 0.63694268, 0.95541401, 1.27388535, 1.59235669])
Magnitude:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> np.linalg.norm( a )
7.416198487095663
Normalization:
>>> a = np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] )
>>> a / np.linalg.norm( a )
array([ 0.13483997, 0.26967994, 0.40451992, 0.53935989, 0.67419986])