Taught by Patrick Hebron at ITP, Fall 2015
Continued from Linear Algebra in Python and Numpy (Part 1)
Documentation:
Importing Numpy library:
import numpy as np
Matrix Transposition:
>>> a = np.array( [ [ 1.0, 2.0, 3.0 ], [ 4.0, 5.0, 6.0 ] ] )
>>> a.T
array([[ 1., 4.],
[ 2., 5.],
[ 3., 6.]])
Matrix Addition:
>>> a = np.array( [ [ 1.0, 2.0, 3.0 ], [ 4.0, 5.0, 6.0 ] ] )
>>> b = np.array( [ [ 10.0, 20.0, 30.0 ], [ 40.0, 50.0, 60.0 ] ] )
>>> a + b
array([[ 11., 22., 33.],
[ 44., 55., 66.]])
Matrix Subtraction:
>>> a = np.array( [ [ 1.0, 2.0, 3.0 ], [ 4.0, 5.0, 6.0 ] ] )
>>> b = np.array( [ [ 10.0, 20.0, 30.0 ], [ 40.0, 50.0, 60.0 ] ] )
>>> a - b
array([[ -9., -18., -27.],
[-36., -45., -54.]])
Matrix Hadamard Product:
>>> a = np.array( [ [ 1.0, 2.0, 3.0 ], [ 4.0, 5.0, 6.0 ] ] )
>>> b = np.array( [ [ 10.0, 20.0, 30.0 ], [ 40.0, 50.0, 60.0 ] ] )
>>> a * b
array([[ 10., 40., 90.],
[ 160., 250., 360.]])
Matrix Multiplication:
>>> a = np.array( [ [ 2, -4, 6 ], [ 5, 7, -3 ] ] )
>>> b = np.array( [ [ 8, -5 ], [ 9, 3 ], [ -1, 4 ] ] )
>>> np.dot( a, b )
array([[-26, 2],
[106, -16]])
Matrix-Scalar Addition:
>>> a = np.array( [ [ 1.0, 2.0, 3.0 ], [ 4.0, 5.0, 6.0 ] ] )
>>> a + 3.14
array([[ 4.14, 5.14, 6.14],
[ 7.14, 8.14, 9.14]])
Matrix-Scalar Subtraction:
>>> a = np.array( [ [ 1.0, 2.0, 3.0 ], [ 4.0, 5.0, 6.0 ] ] )
>>> a - 3.14
array([[-2.14, -1.14, -0.14],
[ 0.86, 1.86, 2.86]])
Matrix-Scalar Multiplication:
>>> a = np.array( [ [ 1.0, 2.0, 3.0 ], [ 4.0, 5.0, 6.0 ] ] )
>>> a * 3.14
array([[ 3.14, 6.28, 9.42],
[ 12.56, 15.7 , 18.84]])
Matrix-Scalar Division:
>>> a = np.array( [ [ 1.0, 2.0, 3.0 ], [ 4.0, 5.0, 6.0 ] ] )
>>> a / 3.14
array([[ 0.31847134, 0.63694268, 0.95541401],
[ 1.27388535, 1.59235669, 1.91082803]])